由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望.
已知函数(
,
)为偶函数,且函数
图象的两相邻对称轴间的距离为
.
(1)求的值;
(2)将函数的图象向右平移
个单位后,纵坐标不变,得到函数
的
图象,求的单调递减区间.
已知函数
(1)设>0为常数,若
上是增函数,求
的取值范围;
(2)设集合若A
B恒成立,求实数
的取值范围
已知圆过点
且与圆M:
关于直线
对称
(1)判断圆与圆M的位置关系,并说明理由;
(2)过点作两条相异直线分别与圆
相交于
、
①若直线与直线
互相垂直,求
的最大值;
②若直线与直线
与
轴分别交于
、
,且
,
为坐标原点,试判断直线
与
是否平行?请说明理由.
直线和圆
交于
、B两点,以为
始边,
、
为终边的角分别为
、
,求
的值