已知函数
(1)当,求函数
的定义域;
(2)当,求
的最小值(用
表示);
(3)是否存在不同的实数,使得
,并且
,若存在,求出实数
的取值范围;若不存在,请说明理由。
正项数列{an}的前n项和Sn满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<
.
已知数列{an}成等比数列,且an>0.
(1)若a2-a1=8,a3=m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
知数列{an}是首项为,公比为
的等比数列,设bn+15log3an=t,常数t∈N*.
(1)求证:{bn}为等差数列;
(2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.
已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.
(1)求通项公式an;
(2)设bn=2an,求数列{bn}的前n项和Sn.
如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.
(1)求·
+S的最大值;
(2)若CB∥OP,求sin的值.