游客
题文

设某物体一天中的温度T是时间t的函数,已知,其中温度的单位是℃,时间的单位是小时.中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(如早上8:00相应的t=-4,下午16:00相应的t=4).若测得该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃,且已知该物体的温度早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00到下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

【选修4—4:坐标系与参数方程】 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆为 圆心、为半径。
(I)写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。

【选修4-1:几何证明选讲】 如图,Δ是内接于⊙O直线切⊙O于点相交于点
(I)求证:Δ≌Δ
(Ⅱ)若,求

已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,不等式恒成立,求实数的取值范围

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:

分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
2
3
10
15
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
15
x
3
1


甲校:

分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
1
2
9
8
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
10
10
y
3

乙校:
(Ⅰ)计算xy的值。


甲校
乙校
总计
优秀



非优秀



总计



(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。

Pk2>k0
0.10
0.025
0.010
K
2.706
5.024
6.635

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号