已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为,椭圆的左右焦点分别为F1和F2 。(Ⅰ)求椭圆方程;(Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值;(Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由。
在平面直角坐标系中,求过椭圆(为参数)的右焦点且与直线(为参数)平行的直线的普通方程。
设不等式的解集为M. (I)求集合M; (II)若a,b∈M,试比较ab+1与a+b的大小.
已知曲线C的参数方程为(为参数,).求曲线C的普通方程。
解不等式:
如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2) (1)过作直线平面,且平面=,求的长度。 (2)求直线与平面所成角的正弦值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号