如图为双曲线
的两焦点,以
为直径的圆
与双曲线
交于
是圆
与
轴的交点,连接
与
交于
,且
是
的中点,
(1)当时,求双曲线
的方程;
(2)试证:对任意的正实数,双曲线
的离心率为常数.
(本小题14分) 已知满足ax·f(x)=2bx+f(x), a≠0, f(1)=1且使
成立的实数x有且只有一个.
(1)求的表达式;
(2)数列满足:
, 证明:
为等比数列.
(3)在(2)的条件下, 若, 求证:
(本小题13分) 如图所示, PQ为平面的交线, 已知二面角
为直二面角,
, ∠BAP=45°.
(1)证明: BC⊥PQ;
(2)设点C在平面内的射影为点O, 当k取何值时, O在平面ABC内的射影G恰好为△ABC的重心?
(3)当时, 求二面角B-AC-P的大小.
(本小题12分)已知: 以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A, 与y轴交于点O, B, 其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N, 若OM = ON, 求圆C的方程.
(本小题12分) 如图,四棱锥P-ABCD的底面是正方形, PA⊥底面ABCD, PA=2,
∠PDA="45°," 点E、F分别为棱AB、PD的中点.
(1)求证: AF∥平面PCE;
(2)求证: 平面PCE⊥平面PCD;
(3)求AF与平面PCB所成的角的大小.
(本小题12分) 已知两条直线l1: ax-by+4=0和l2: (a-1)x+y+b="0," 求满足下列条件的a, b的值.
(1)l1⊥l2, 且l1过点(-3, -1);
(2)l1∥l2, 且坐标原点到这两条直线的距离相等.