某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
![]() 消耗量 资源 |
甲产品 (每吨) |
乙产品 (每吨) |
资源限额 (每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳力(个) |
3 |
10 |
300 |
利润(万元) |
6 |
12 |
|
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
(本小题满分12分)
设的前n项和,对
,都有
(1)求数列的通项公式;
(2)设的前n项和,求证:
(本小题满分12分)
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,
,E是CD的中点,PA
底面ABC
D,PA=4
(1)证明:若F是棱PB的中点,求证:EF//平面PAD;
(2)求平面PAD和平面PBE所成二面角(锐角)的大小。
(本小题满分12分)
小明参加一次比赛,比赛共设三关。第一、二关各有两个问题,两个问题全答对,可进入下一关。第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得价值分别为100、300、500元的奖励。小明对三关中每个问题回答正确的概率依次为且每个问题回答正确与否相互独立。
(1)求小明过第一关但未过第二关的概率;
(2)求小明至少获得奖金400元的概率。
(本小题满分10分)
在中,角A、B、C所对的边分别为a、b、c,且
(1)求内角A的度数;
(2)求的范围。
(本小题满分12分)
设函数
(1)设,讨论函数
的
单调性;
(2)若对任意成立,求实数
的取值范围。