已知为各项均为正数的等比数列
的前n项和,且
,
(I)求数列的通项公式;(II)若
,求n的最小值。
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若存在,使不等式
成立,求实数
的取值范围;
(Ⅲ)若关于的方程
在区间
上恰好有两个不相等的实根,求实数
的取值范围.
已知定义域为的函数
是奇函数.
(Ⅰ)求的值;
(Ⅱ)判断的单调性,并证明你的结论;
(Ⅲ)若对任意的,不等式
恒成立,求
的取值范围.
某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数。已知销售价格为5元/千克时,每日可售出该商品11千克。
(Ⅰ)求实数的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
如图,在平面直角坐标系中,以ox轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
(Ⅰ)求的值; (Ⅱ)求
的值。