若非零向量、
满足
,证明:
设函数(
)的图象过点
.
(Ⅰ)求的解析式;(Ⅱ)已知
,
,求
的值.
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.
如图,已知三棱柱的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论取何值,总有
;
(Ⅱ)当取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.
已知圆C:,直线L:
(1)求证:对m,直线L与圆C总有两个交点;
(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;
(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
如图,在直三棱柱中,
、
分别是
、
的中点,点
在
上,
。
求证:(1)EF∥平面ABC;
(2)平面平面
.