在中,角
所对的边分别为
,且
.
(1)求角C;
(2)若,
的面积
,求
及边
的值.
已知函数
(1)当x>0时,证明;
(2)当x>-1且x≠0时,不等式恒成立,求实数k的值.
已知椭圆(
)的左、右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形.
(1)求椭圆的方程;
(2)若、
分别是椭圆长轴的左、右端点,动点
满足
,连结
,交椭圆于点
.证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点Q,使得以
为直径的圆恒过直线
的交点,若存在,求出点Q的坐标;若不存在,说明理由.
在雅礼中学组织的“雅礼杯”篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,
.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.
(1)求3次投篮的人依次是甲、甲、乙的概率;
(2)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.
如图,已知面
,
,
;
(1)在线段上找一点M,使
面
。
(2)求由面与面
所成角的二面角的正切值。