(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,
,
,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为
,
,
.
(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量
的期望.
如图,直三棱柱中,D,E分别是AB,
的中点
(1)证明:;
(2)设,求三棱锥
的体积
对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率
已知函数的图象的两条相邻对称轴间的距离等于
,在
ABC中,角A,B,C所对的边依次为a,b,c,若
, b+c=3,
,求
ABC的面积.
己知长方体的三条棱长分别为a、b、c,其外接球的半径为
(1)求长方体体积的最大值:
(2)设,求
的最大值
己知抛物线的顶点M到直线
(t为参数)的距离为1
(1)求m;
(2)若直线与抛物线相交于A,B两点,与y轴交于N点,求
的值.