游客
题文

某商场预计2009年1月份起前x个月,顾客对某种商品的需求总量p(x)(单位:件)与x的关系近似地满足p(x)=x(x+1)(39-2x),(x∈N*,且x≤12).该商品第x月的进货单价q(x)(单位:元)与x的近似关系是q(x)=150+2x.(x∈N*,且x≤12).(1)写出今年第x月的需求量f(x)件与x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2009年第几月份销售该商品的月利润最大,最大月利润为多少元?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,λ,求点M的轨迹方程,并说明轨迹是什么曲线.

在平面直角坐标系xOy中,已知对于任意实数k,直线(k+1)x+(k)y-(3k)=0恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+.
(1)求椭圆C的方程;
(2)设(mn)是椭圆C上的任意一点,圆Ox2y2r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1mxny=1和l2mxny=4的位置关系.

已知双曲线x2=1.

(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标..

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号