某商场预计2009年1月份起前x个月,顾客对某种商品的需求总量p(x)(单位:件)与x的关系近似地满足p(x)=x(x+1)(39-2x),(x∈N*,且x≤12).该商品第x月的进货单价q(x)(单位:元)与x的近似关系是q(x)=150+2x.(x∈N*,且x≤12).(1)写出今年第x月的需求量f(x)件与x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2009年第几月份销售该商品的月利润最大,最大月利润为多少元?
(本题满分15分)函数,
是它的导函数.
(Ⅰ)当时,若
在区间
存在单调递增区间,求
的取值范围。
(Ⅱ)当时,
恒成立,求
的最小值.
(本题满分14分)四棱锥的底面
是直角梯形,
∥
,
,
,
,
(Ⅰ)求证:平面平面
;
(Ⅱ)求直线与平面
所成角的正切值.
(本题满分14分)设等比数列的首项为
,公比
,前
项和为
(Ⅰ)当时,
三数成等差数列,求数列
的通项公式;
(Ⅱ)对任意正整数,命题甲:
三数构成等差数列.
命题乙:三数构成等差数列.
求证:对于同一个正整数,命题甲与命题乙不能同时为真命题.
(本题满分14分)设,向量
,
,函数
.(Ⅰ)在区间
内,求
的单调递减区间;
(Ⅱ)若,其中
,求
.
设 x1、x2()是函数
(
)的两个极值点.(I)若
,
,求函数
的解析式;
(II)若 ,求 b 的最大值;
(III)设函数 ,
,当
时,求
的最大值.