设 x1、x2()是函数
(
)的两个极值点.(I)若
,
,求函数
的解析式;
(II)若 ,求 b 的最大值;
(III)设函数 ,
,当
时,求
的最大值.
(本小题满分13分)
如图,已知正三棱柱的底面正三角形的边长是2,D是
的中点,直线
与侧面
所成的角是
.
⑴求二面角的大小;
⑵求点到平面
的距离.
(本小题满分13分)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数的分布列与期望E
.
.
(本小题满分13分)
已知函数(
),且函数
的最小正周期为
.
⑴求函数的解析式;
⑵在△中,角
所对的边分别为
.若
,
,且
,试求
的值.
(23)(本小题满分10分)选修4-4:坐标系与参数方程
已知直线C1(t为参数),C2
(
为参数),
(Ⅰ)当=
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O作 C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,已经⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O、BD于点E、F,连结CE.
(Ⅰ) 求证:AG·EF=CE·GD;
(Ⅱ) 求证: