2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:
福娃名称 |
贝贝 |
晶晶 |
欢欢 |
迎迎 |
妮妮 |
数量 |
1 |
1 |
1 |
2 |
3 |
从中随机地选取5只.(I)求选取的5只恰好组成完整“奥运吉祥物”的概率;
(II)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推. 设ξ表示所得的分数,求ξ的分布列及数学期望.
如图,四棱锥中,
⊥底面
,底面
为梯形,
,
,且
,点
是棱
上的动点.
(Ⅰ)当∥平面
时,确定点
在棱
上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
在中,
分别为角
所对的边,且
,
(Ⅰ)求角;
(Ⅱ)若,
,
的周长为
,求函数
的取值范围.
设是平面上的两个向量,若向量
与
互相垂直.
(Ⅰ)求实数的值;
(Ⅱ)若,且
,求
的值.
已知数列的前
项和为
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)记,求数列
的前
项和
.
某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,第一次服药后每毫升血液中的含药量
与服药后的时间
之间近似满足如图所示的曲线。其中
是直线段,曲线部分
是过
、
两点的函数
的图象。
(I)写出第一次服药后每毫升血液中含药量关于时间
的函数关系式;
(II)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?
(Ⅲ) 若按(II)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少
?(精确到
)。