如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.
(本小题满分12分)已知函数
(Ⅰ)求函数的对称中心;
(Ⅱ)已知△ABC内角的对边分别为
,且
,
,
,求
(本小题满分14分)设函数.
(1)若函数在
上为减函数,求实数
的最小值;
(2)若存在,使
成立,求实数
的取值范围.
(本小题满分13分)已知椭圆(
)的左、右顶点分别为
,
,且
,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.
(本小题满分12分)已知单调递增的等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
成立的正整数
的最小值.
如图,在三棱锥中,平面
平面
,
于点
,且
,
,
(1)求证:
(2)
(3)若,
,求三棱锥
的体积.