游客
题文

抛物线有光学性质: 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0) 一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l: 2x-4y-17=0上的点N,再折射后又射回点M(如下图所示)

(1)设PQ两点坐标分别为(x1,y1)、(x2,y2),证明:y1·y2=-p2
(2)求抛物线的方程;
(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

试求三直线ax+y+1=0,x+ay+1=0,x+y+a=0构成三角形的条件.

已知A(4,-3)、B(2,-1)和直线l:4x+3y-2=0,求一点P,使|PA|=|PB|,且点P到直线l的距离等于2.

正方形的中点在原点,若它的一条边所在的直线方程为3x+4y-5=0.求这个正方形的其他边所在的直线的方程.

已知点P(2,-1),求:
(1)过点P且与原点的距离为2的直线方程;
(2)过点P且与原点的距离最大的直线方程,并求出最大值.
(3)是否存在过点P且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.

求直线l1:2x+y-4=0关于l:3x+4y-1=0对称的直线l2的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号