游客
题文

统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题共14分)已知函数其中常数.
(1)当时,求函数的单调递增区间;
(2)当时,若函数有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数在点处的切线方程为时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.

(本小题共13分)设k∈R,函数 ,,x∈R.试讨论函数F(x)的单调性.

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

(本小题共12分)
已知函数f(t)= ]
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.

(本小题共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同时满足条件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号