设a,b,c ∈ R,a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥ 4 3 .
设向量,,为锐角. (1)若,求的值; (2)若,求的值.
已知等差数列满足:,的前n项和为. (1)求及; (2)令,求数列的前n项和.
已知函数 ⑴求的最小正周期及对称中心; ⑵若,求的最大值和最小值.
设函数,数列满足. ⑴求数列的通项公式; ⑵设,若对恒成立,求实数的取值范围; ⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.
已知函数在点处的切线方程为. ⑴求函数的解析式; ⑵若对于区间上任意两个自变量的值都有,求实数的最小值; ⑶若过点可作曲线的三条切线,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号