设函数,数列
满足
.
⑴求数列的通项公式;
⑵设,若
对
恒成立,求实数
的取值范围;
⑶是否存在以为首项,公比为
的数列
,
,使得数列
中每一项都是数列
中不同的项,若存在,求出所有满足条件的数列
的通项公式;若不存在,说明理由.
右图为一简单组合体,其底面ABCD为正方形,平面
,
,且
,(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:
平面
;
(3)若,求平面PBE与平面ABCD所成的二面角的大小.
已知复数,
,且
.(1)若
且
,求
的值;(2)设
=
,已知当
时,
,试求
的值.
已知的图象经过点
,且在
处的切线方程是
(1)求的解析式;
(2)点是直线
上的动点,自点
作函数
的图象的两条切线
、
(点
、
为切点),求证直线
经过一个定点,并求出定点的坐标。
已知函数。
(1)求的单调区间;
(2)如果在区间
上的最小值为
,求实数
以及在该区间上的最大值.
已知两定点,动点
满足
。
(1)求动点的轨迹方程;
(2)设点的轨迹为曲线
,试求出双曲线
的渐近线与曲线
的交点坐标。