已知集合,求
的值
等差数列中,
,
;数列
的前
项和是
,且
.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 求证:数列是等比数列;
(Ⅲ) 记,求
的前n项和
.
数列中,已知
,且
是1与
的等差中项.
(Ⅰ)求;
(Ⅱ)设,记数列
的前
项和为
,证明:
在△ ABC中, BC= , , .
(Ⅰ)求 AB的值;
(Ⅱ)求
的值.
已知α=1690o,
(1)把α表示成2kπ+β的形式(k∈Z,β∈).
(2)求θ,使θ与α的终边相同,且θ∈(- 4π,- 2π).
直角坐标系xoy中,角的始边为x轴的非负半轴,终边为射线l:y=
x (x≥0).
(1)求的值;
(2)若点P,Q分别是角始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.