如图,在矩形中,已知
,
,在
.
.
.
上,分别截取
,设四边形
的面积为
.
(1)写出四边形的面积
与
之间的函数关系式;
(2)求当为何值时
取得最大值,最大值是多少?
证明不等式(n∈N*)
已知函数f(x)=(x≠﹣1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an﹣
|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤;
(Ⅱ)证明Sn<.
在数列|an|中,a1=t﹣1,其中t>0且t≠1,且满足关系式:an+1(an+tn﹣1)=an(tn+1﹣1),(n∈N+)
(1)猜想出数列|an|的通项公式并用数学归纳法证明之;
(2)求证:an+1>an,(n∈N+).
已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn>
.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤(
)•(
).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.