(13分)如图(3):四面体D—ABC中,DB⊥面ABC, ∠DAB="30°,∠BAC=45°," ∠ACB=90°.BC=.
(1)点A与面BCD的距离; (2)AB与CD成的角的余弦值.
如图所示,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1;
(2)求直线A1C与平面BCC1B1所成角的正切值;
(3)求点C1到平面A1CB的距离.
如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.
在五棱锥P—ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=
∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求二面角A—PD—E的余弦值.
如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,
BC=1,PA=2,E为PD的中点.
(1)求直线AC与PB所成角的余弦值;
(2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.
已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.