为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为a米,高度为b米,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60平方米,问当a、b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?
(本小题满分12分)
已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,
AB=BC=2CD,PO⊥平面ABCD.
(1)求证:BD⊥PE;
(2)若AO=2PO,求二面角D-PE-B的余弦值.
(本小题满分12分)
设数列{}的前n项和
满足:
=n
-2n(n-1).等比数列{
}的前n项和为
,公比为
,且
=
+2
.
(1)求数列{}的通项公式;
(2)设数列{}的前n项和为
,求证:
≤
<
.
(12分)已知函数在
上是增函数,
在
上为减函数。
(1)求f(x) ,g(x)的解析式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解。
(12分)设函数满足条件f(-1+x)=f(-1-x),且关于x的不等式
的解集为
(1)求函数f(x)的解析式;
(2)若时,不等式
恒成立,求实数t的取值范围。
(12分)若函数y=lg(3-4x+x2)的定义域为M,.当x∈M时,
求f(x)=2x+2-3×4x的最值及相应的x的值.