游客
题文

某厂使用两种零件AB装配两种产品PQ,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个. 已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装PQ产品各多少件?最大利润多少万元.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知mnf(x)=m·n,且f.
(1)求A的值;
(2)设αβf(3α+π)=f=-,求cos (αβ)的值.

已知函数f(x)=sin ωx·cos ωx+cos 2ωx(ω>0),其最小正周期为.
(1)求f(x)的解析式.
(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数yg(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.

在△ABC中,角ABC的对边分别为abc,已知角A, sin B=3sin C.
(1)求tan C的值;
(2)若a,求△ABC的面积.

已知函数f(x)=sin ωx-sin2(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间;
(2)当x时,求函数f(x)的取值范围.

由于某高中建设了新校区,为了交通方便要用三辆通勤车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号