在中,角
为锐角,已知内角
、
、
所对的边分别为
、
、
,向量
且向量
共线.
(1)求角的大小;
(2)如果,且
,求
的值.
(本小题12分)已知数列有
(常数
),对任意的正整数
,并有
满足
。
(Ⅰ)求的值并证明数列
为等差数列;
(Ⅱ)令,是否存在正整数M,使不等式
恒成立,若存在,求出M的最小值,若不存在,说明理由。
(本小题12分)如图,直三棱柱中,
,
为
中点,若规定主视方向为垂直于平面
的方向,则可求得三棱柱左视图的面积为
;
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积。
(本小题12分)某电视节目《幸运猜猜猜》有这样一个竞猜环节,一件价格为9816元的商品,选手只知道1,6,8,9四个数,却不知其顺序,若在竞猜中猜出正确价格中的两个或以上(但不含全对)正确位置,则正确位置会点亮红灯作为提示;若全对,则所有位置全亮白灯并选手赢得该商品,
(Ⅰ)求某选手在第一次竞猜时,亮红灯的概率;
(Ⅱ)若该选手只有二次机会,则他赢得这件商品的概率为多少?
(本小题12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.
(Ⅰ)求角的大小;
(Ⅱ)若角,
边上的中线
的长为
,求
的面积.
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知函数;
,
(1)当为偶函数时,求
的值。
(2)当时,
在
上是单调递增函数,求
的取值范围。
(3)当时,(其中
,
),若
,且函数
的图像关于点
对称,在
处取得最小值,试探讨
应该满足的条件。