游客
题文

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用 平行线法
登录免费查看答案和解析
相关试题

甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别.
(Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率;
(Ⅱ)将这两个盒子中的球混合在一起,从中任取2个, 求取出的2个球中至少有一个黑球的概率.

已知向量,设函数.
(Ⅰ)求函数的解析式,并求在区间上的最小值;
(Ⅱ)在中,分别是角的对边,为锐角,若
的面积为,求.

某高中在校学生2000人,高一年级与高二年级人数相同并且都比高三年级多1人,为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:


高一年级
高二年级
高三年级
跑步



跳绳



其中,全校参与跳绳的人数占总人数的,为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取人.


(Ⅰ)解不等式
(Ⅱ)若对任意实数恒成立,求实数a的取值范围.

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(Ⅰ)求的直角坐标方程;
(Ⅱ)直线为参数)与曲线C交于两点,与轴交于,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号