游客
题文

(本小题共13分)如图所示,在正方体中,分别是棱的中点.

(Ⅰ)证明:平面平面
(Ⅱ)证明://平面
(Ⅲ)若正方体棱长为1,求四面体的体积.

科目 数学   题型 解答题   难度 中等
知识点: 表面展开图
登录免费查看答案和解析
相关试题

某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表

指标值分组
[90,94)
[94,98)
[98,102)
[102,106)
[106,110)
频数
8
20
42
22
8

B配方的频数分布表

指标值分组
[90,94)
[94,98)
[98,102)
[102,106)
[106,110)
频数
4
12
42
32
10

(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)

某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.

(1)根据茎叶图计算样本均值;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?
(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.

已知椭圆中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线yx-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于MN两点,求△OMN面积的最大值(O为坐标原点).

在平面直角坐标系xOy中,F是抛物线Cx2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过MFO三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程.
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

如图所示,已知椭圆=1(ab>0)的右焦点为F2(1,0),点A在椭圆上.

(1)求椭圆方程;
(2)点M(x0y0)在圆x2y2b2上,点M在第一象限,过点M作圆x2y2b2的切线交椭圆于PQ两点,问||+||+||是否为定值?如果是,求出该定值;如果不是,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号