(本小题共13分)如图所示,在正方体中,
分别是棱
的中点.
(Ⅰ)证明:平面平面
;
(Ⅱ)证明://平面
;
(Ⅲ)若正方体棱长为1,求四面体的体积.
(本小题满分10分)已知,
.
(1)若,求实数a的取值范围;
(2)若,求实数a的取值范围.
(本小题满分14分)已知函数,若在区间
内有且仅有一个
,使得
成立,则称函数
具有性质
.
(1)若,判断
是否具有性质
,说明理由;
(2)若函数具有性质
,试求实数
的取值范围.
(本小题满分12分)已知函数图象的一部分如图所示.
(1)求函数的解析式;
(2)当时,求函数
的最大值与最小值及相应的
的值.
(本小题满分12分)设函数.
(1)求函数的最小正周期和单调递增区间;
(2)当时,
的最大值为2,求
的值,并求出
的对称轴方程.
(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当
时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳。
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由。