游客
题文

如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。
(1)建立适当的坐标系,求曲线E的方程;
(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知正三棱柱的各条棱长都为a,P为上的点。
(1)试确定的值,使得PC⊥AB;
(2)若,求二面角P—AC—B的大小;
(3)在(2)的条件下,求到平面PAC的距离。

已知点F(0,1),直线ly=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且··.
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆Mx轴交于AB两点,设|DA|=l1,|DB|=l2,求的最大值.

投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.
(1)求点P落在区域上的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.

如图,在直三棱柱ABCA1B1C1中,已知BC=1,BB1=2,AB⊥平面BB1C1C.
(1)求直线C1B与底面ABC所成角的正切值;
(2)在棱CC1(不包括端点CC1)上确定一点E的位置,使EAEB1(要求说明理由);
(3)在(2)的条件下,若AB=,求二面角AEB1A1的大小.

已知椭圆C:+=1(a>b>0)的离心率为,椭圆C上任意一点到椭圆C两个焦点的距离之和为6.
(1)求椭圆C的方程;
(2)设直线lykx-2与椭圆C交于AB两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号