如图所示,两根水平平行固定的光滑金属导轨宽为L,足够长,在其上放里两根长也为L且与导轨垂直的金属棒ab和cd,它们的质量分别为2m、m,电阻阻值均为R(金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B、方向竖直向下的匀强磁场中.
(1)现把金属棒ab锁定在导轨的左端,如图甲,对 cd施加与导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?
(2)若对金属棒ab解除锁定,如图乙,使金属棒cd获得瞬时水平向右的初速度v0,当它们的运动状态达到稳定的过程中,流过金属棒ab的电量是多少?整个过程中ab和cd相对运动的位移是多大?
一个质量为m,带电量为+q的带电粒子(不计重力),从图中原点O处以初速v0射入一个有界的匀强磁场中,已知v0方向为+y方向,匀强磁场的方向垂直于纸面向外(即+z方向),磁感应强度大小为B,它的边界为半径是r的圆形,O点恰在它的圆周上.粒子进入磁场后将做匀速圆周运动,已知它做圆周运动的轨道半径比圆形磁场的半径r大.
(1)改变这个圆形磁场区域的圆心的位置,可改变粒子在磁场中的偏转角度.求粒子在磁场中的最大偏转角度(用反三角函数表示).
(2)当粒子在磁场中的偏转角度最大时,它从磁场中射出后沿直线前进一定能打到x轴上,求满足此条件的r的取值范围.
如图所示,在虚线MN的上下两边都存在着方向垂直纸面向里的匀强磁场,上方的磁感强度为B1,下方的磁感强度为B2,已知B2=2B1.一个质量为m、带电量为q的带电粒子(不计重力)以初速v0从MN上的A点由下方垂直于MN射入上方的磁场区.已知它在运动过程中先后两次经过MN上的B点,且这两次之间的时间间隔为t.求
(1)磁感强度B1和B2的大小.
(2)AB间距离的可能值.
如下图所示,半径为R=10cm的匀强磁场区域边界跟Y轴相切于坐标原点O,磁感强度B=0.322T,方向垂直纸面向里,在O处有一放射源S,可沿纸面向各个方向射出速率为V=3.2×的α粒子.已知α粒子质量m=6.4×
,电量q=3.2×
.
(1)画出α粒子通过磁场空间做圆周运动的圆心点的轨迹.
(2)求出α粒子通过空间的最大偏转角.
匀强磁场仅存在于两平行极板之间,磁感强度为B,各部分长度如图.现有质量为m,电量为q的电子(不计重力),从左边中点平行于板射入,欲使其打在极板上,求电子的速率应该在什么范围?
如图(a)所示,M、N为竖直放置,彼此平行的两块平板,板间距离为d。两板中央各有一个小孔O、O'正对,在两板间有垂直于纸面方向的磁场,磁感强度随时间的变化如图(b)。有一群正离子从t=0时垂直于M板从小孔O射入磁场,已知离子质量为m,带电量为q ,离子在磁场中作匀速圆周运动的周期与磁感强度变化的周期都为。不考虑由于磁场变化而产生的电场的影响,不计离子所受重力。求: (1)磁感强度
的大小。
(2)要使离子从O'垂直于N板射出磁场,离子射入磁场时的速度应多大?