已知函数.
(1)当函数取得最大值时,求自变量
的集合;
(2)该函数的图象可由的图象经过怎样的平移和伸缩变换得到?
已知是
上的奇函数,且当
时,
;
(1)求的解析式;
(2)作出函数的图象(不用列表),并指出它的增区间.
计算:
(1)已知全集为,集合
,
,求
.
(2)
(本小题满分12分)定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.已知函数
,
(1)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以4为上界的有界函数,求实数
的取值范围.
(本小题满分12分)已知定义域为的函数
满足:①
时,
;②
③对任意的正实数
,都有
;
(1)求证:;
(2)求证:在定义域内为减函数;
(3)求不等式的解集.
(本小题满分12分)对于函数,
(1)求函数的定义域;
(2)当为何值时,
为奇函数;
(3)写出(2)中函数的单调区间,并用定义给出证明.