(本小题满分13分)在中,
.
(Ⅰ)若,求
的大小;
(Ⅱ)若,求
的面积的最大值.
(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
分组(日销售量) |
频率(甲种酸奶) |
[ 0,10] |
0.10 |
(10,20] |
0.20 |
(20,30] |
0.30 |
(30,40] |
0.25 |
(40,50] |
0.15 |
(Ⅰ)写出频率分布直方图中的的值,并作出甲种酸奶日销售量的频率分布直方图;
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,
,试比较
与
的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
(本小题满分13分)已知数列的前
项和为
,
,且
是
与
的等差中项.
(Ⅰ)求的通项公式;
(Ⅱ)若数列的前
项和为
,且对
,
恒成立,求实数
的最小值.
(本小题满分14分)
有限数列同时满足下列两个条件:
①对于任意的(
),
;
②对于任意的(
),
,
,
三个数中至少有一个数是数列
中的项.[来
(1)若,且
,
,
,
,求
的值;
(2)证明:不可能是数列
中的项;
(3)求的最大值.
(本小题满分13分)已知椭圆过点
,且离心率
.
(1)求椭圆的方程;
(2)是否存在菱形,同时满足下列三个条件:
①点在直线
上;
②点,
,
在椭圆
上;
③直线的斜率等于
.
如果存在,求出点坐标;如果不存在,说明理由.