定义在上的函
为常数)在x=-1处取得极值,且
的图像在
数处的切线平行与直线
.
(1)求函数的解析式及极值;
(2)设,求不等式
的解集;
(3)对任意
(满分12分)定义在R上的奇函数有最小正周期4,且
时,
。
(1)求在
上的解析式;
(2)判断在(0,2)上的单调性,并给予证明;
(3)当为何值时,关于方程
在
上有实数解?
(满分12分)是等差数列
的前
项和,
,
。
(1)求的通项公式;
(2)设(
是实常数,且
),求
的前
项和
。
(满分12分)设命题P:关于的不等式:
的解集是R,命题Q:函数
的定义域为R,若P或Q为真,P且Q为假,求
的取值范围。
(满分10分)在△ABC中,角A,B,C所对的边分别为,已知
。
(1)求A的大小;
(2)如果,
,求△ABC的面积。
已知函数.
(1)若函数在
处取极值,求
的值;
(2)如图,设直线将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数
的图象恰好位于其中一个区域内,判断其所在的区域并求对应的
的取值范围;
(3)比较与
的大小,并说明理由.