(2009辽宁卷理)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)
已知方程x 2+y 2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且 (其中O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
已知两圆x 2+y 2-2x-6y-1=0.x 2+y 2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.
已知实数x,y满足
求:(1)z=x+2y-4的最大值;
(2)z=x2+y2-10y+25的最小值;
(3)z=的取值范围.
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的方程;
(2)设直线与圆相交于A,B两点,求实数
的取值范围.
已知直线经过点A
,求:
(1)直线在两坐标轴上的截距相等的直线方程;
(2)直线与两坐标轴的正半轴围成三角形面积最小时的直线方程.