(2009辽宁卷理)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)
(本小题满分14分)已知:在函数的图象上,以
为切点的切线的倾斜角为
(I)求的值;
(II)是否存在最小的正整数,使得不等式
恒成立?如果存在,请求出最小的正整数
,如果不存在,请说明理由。
(本小题满分14分):已知函数是奇函数,并且函数
的图像经过点(1,3),(1)求实数
的值;(2)求函数
的值域
(本小题满分14分)A=,B=
(1)求A,B
(2)求
(本小题12分)已知函数f(x)=ax3+x2-2x+c,过点
,且在(-2,1)内单调递减,在[1,
上单调递增。
(1)证明sinθ=1,并求f(x)的解析式。
(2)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤恒成立。试问这样的m是否存在,若存在,请求出m的范围,若不存在,说明理由。
(3)已知数列{an}中,a1∈,an+1=f(an),求证:an+1>8·lnan(n∈N*)。
(本小题满分12分)已知双曲线的离心率
,过点
和
的直线与原点间的距离为
(Ⅰ)求双曲线方程;
(Ⅱ)直线与双曲线交于不同的两点
,且
两点都在以
为圆心的同一个圆上,求
的取值范围.