(2009全国卷Ⅰ文)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
已知
(1)若,求
的极大值点;
(2)若且
存在单调递减区间,求
的取值范围.
已知椭圆过点
,且离心率为
.斜率为
的直线
与椭圆
交于A、B两点,以
为底边作等腰三角形,顶点为
.
(1)求椭圆的方程;
(2)求△的面积.
已知等比数列为正项递增数列,且
,
,数列
.
(1)求数列的通项公式;
(2),求
.
已知曲线的参数方程是
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出的极坐标方程和
的直角坐标方程;
(2)已知点、
的极坐标分别是
、
,直线
与曲线
相交于
、
两点,射线
与曲线
相交于点
,射线
与曲线
相交于点
,求
的值.
如图:是⊙
的直径,
是弧
的中点,
⊥
,垂足为
,
交
于点
.
(1)求证:=
;
(2)若=4,⊙
的半径为6,求
的长.