已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率等于
.
求椭圆C的方程;
过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
=λ1
,
=λ2
,求证λ1+λ2为定值.
为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为
,并且进入“电影社”的概率小于进入“心理社”的概率.
(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入“心理社”的概率
;
(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数的分布列和数学期望.
求与椭圆有公共焦点,且离心率
的双曲线方程.
(本小题满分10分)已知(
),
,其中
是自然对数的底数,
.
(1)当时,求函数
的单调区间和极值;
(2)求证:当时,
;
(3)是否存在实数,使
的最小值是
?若存在,求出
的值;若不存在,请说明理由.
(本小题满分10分)设函数,
,其中
.
(1)若函数的图象恒过定点
,且点
在函数
的图象上,求函数
在点
处的切线方程;
(2)当时,设
(其中
是
的导函数),试讨论
的单调性.
(本小题满分10分)已知某公司生产一种零件的年固定成本是万元,每生产
千件,须另投入
万元,设该公司年内共生产该零件
千件并全部销售完,每
千件的销售收入为
万元,且
.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这种零件的生产中所获利润最大?(注:年利润=年销售收入-年总成本)