游客
题文

某班同学利用国庆节进行社会实践,对岁的人群随机抽取
进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,
否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图并求的值;
(2)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在① ac = 3 ,② c sin A = 3 ,③ c = 3 b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 c 的值;若问题中的三角形不存在,说明理由.

问题:是否存在 ABC ,它的内角的对边分别为 a , b , c ,且 sin A = 3 sin B C = π 6 ,________?

注:如果选择多个条件分别解答,按第一个解答计分.

已知椭圆C x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 2 2 ,且过点A(2,1).

(1)求C的方程:

(2)点MNC上,且AMANADMND为垂足.证明:存在定点Q,使得|DQ|为定值.

已知函数 f ( x ) = a e x - 1 - ln x + ln a

(1)当 a = e 时,求曲线y=fx)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;

(2)若fx)≥1,求a的取值范围.

如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l

(1)证明: l⊥平面 PDC

(2)已知 PD= AD=1, Ql上的点,求 PB与平面 QCD所成角的正弦值的最大值.

为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 S O 2 浓度(单位: μ g/ m 3 ),得下表:

S O 2

PM 2 . 5

[ 0 , 50 ]

( 50 , 150 ]

( 150 , 475 ]

[ 0 , 35 ]

32

18

4

( 35 , 75 ]

6

8

12

( 75 , 115 ]

3

7

10

(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;

(2)根据所给数据,完成下面的 2 × 2 列联表:

S O 2

PM 2 . 5

[ 0 , 150 ]

( 150 , 475 ]

[ 0 , 75 ]



( 75 , 115 ]



(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?

附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 > K )

0.050

0.010

0.001

K

3.841

6.635

10.828

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号