为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 天空气中的 和 浓度(单位: ),得下表:
|
|
|
|
|
32 |
18 |
4 |
|
6 |
8 |
12 |
|
3 |
7 |
10 |
(1)估计事件"该市一天空气中 浓度不超过 ,且 浓度不超过 "的概率;
(2)根据所给数据,完成下面的 列联表:
|
|
|
|
||
|
(3)根据(2)中的列联表,判断是否有 的把握认为该市一天空气中 浓度与 浓度有关?
附: ,
|
0.050 |
0.010 |
0.001 |
K |
3.841 |
6.635 |
10.828 |
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为
.求关于
的一元二次方程
有实根的概率;
(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
.若以
作为点P的坐标,求点P落在区域
内的概率.
设数列的前
项和为
,已知
(1)求数列的通项公式;
(2)若,求数列
的前
项和
设函数f(x)=loga(ax+).(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)的单调性并证明.
设的内角
的对边分别为
,
,
,求
.
已知.
(Ⅰ)求的值;
(Ⅱ)求的值.