游客
题文

为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 S O 2 浓度(单位: μ g/ m 3 ),得下表:

S O 2

PM 2 . 5

[ 0 , 50 ]

( 50 , 150 ]

( 150 , 475 ]

[ 0 , 35 ]

32

18

4

( 35 , 75 ]

6

8

12

( 75 , 115 ]

3

7

10

(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;

(2)根据所给数据,完成下面的 2 × 2 列联表:

S O 2

PM 2 . 5

[ 0 , 150 ]

( 150 , 475 ]

[ 0 , 75 ]



( 75 , 115 ]



(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?

附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 > K )

0.050

0.010

0.001

K

3.841

6.635

10.828

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图, 在平面直角坐标系 xOy 中, 已知以 M 为圆心的圆

M : x 2 + y 2 - 12 x - 14 y + 60 = 0 及其上一点 A ( 2 , 4 )

(1) 设圆 N x 轴相切, 与圆 M 外切, 且圆心 N 在直线 x = 6 上, 求圆 N 的标准方程;

(2) 设平行于 OA 的直线 l 与圆 M 相交于 B , C 两点, 且 BC = OA , 求直线 l 的方程;

(3) 设点 T ( t , 0 ) 满足:存在圆 M 上的两点 P Q , 使得 TA + TP = TQ , 求实数 t 的取值范围。

image.png

现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱雉 P - A 1 B 1 C 1 D 1 ,下部分的形状是正四棱柱 ABCD - A 1 B 1 C 1 D 1 (如图所示),并要求正四棱柱的高 P O 1 的四倍.

(1)若 AB = 6 m PO 1 = 2 m ,则仓库的容积是多少?

(2)若正四棱柱的侧棱长为 6 m ,则当 P O 1 为多少时,仓库的容积最大?

image.png

如图,在直三棱柱 ABC - A 1 B 1 C 1 中, D , E 分别为 AB BC 的中点,点 F 在侧棱 B 1 B 上, 且 B 1 D A 1 F A 1 C 1 A 1 B 1

求证:(1)直线 DE / / 平面 A 1 C 1 F

(2) 平面 B 1 DE 平面 A 1 C 1 F

image.png

ABC 中, AC = 6 , cos B = 4 5 , C = π 4 .

(1) 求 AB 的长;

(2) 求 cos A - π 6 的值

已知函数 f ( x ) =│ x+1│-│ x-2│.

(1)求不等式 f ( x ) ≥1的解集;

(2)若不等式 f ( x ) x 2- x+ m的解集非空,求实数 m的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号