求下列极限:
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型 钢板规格 |
A规格 |
B规格 |
C规格 |
第一种钢板 |
2 |
1 |
1 |
第二种钢板 |
1 |
2 |
3 |
今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需A、B、C三种规格成品,且使所用的钢板的张数最少?
已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13.
(1)求an及Sn;
(2)令bn=(n∈N*),求数列{bn}的前n项和Tn.
函数.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且,求△ABC的面积的最大值.
定义在上的函数
满足对任意
都有
.
且时,
,
(1)求证:为奇函数;
(2)试问在
上是否有最值?若有,求出最值;若无,说明理由;
(3)若对任意
恒成立,求实数
的取值范围.
设为实数,函数
.
(1)若函数是偶函数,求实数
的值;
(2)若,求函数
的最小值;
(3)对于函数,在定义域内给定区间
,如果存在
,满足
,则称函数
是区间
上的“平均值函数”,
是它的一个“均值点”.如函数
是
上的平均值函数,
就是它的均值点.现有函数
是区间
上的平均值函数,求实数
的取值范围.