为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分 |
[50,60) |
[60,70) |
[70,80) |
[80,90] |
评定类型 |
不合格 |
合格 |
良好 |
优秀 |
贷款金额(万元) |
0 |
200 |
400 |
800 |
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(Ⅰ)估计该系统所属企业评估得分的中位数;
(Ⅱ)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(Ⅰ)写出曲线的直角坐标方程和直线
的普通方程;
(Ⅱ)若,求
的值.
如图,已知为圆
的一条直径,以端点
为圆心的圆交直线
于
两点,交圆
于
两点,过点
作垂直于
的直线,交直线
于
点.
(Ⅰ)求证:四点共圆;
(Ⅱ)若,求
外接圆的半径.
已知函数(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中
为
的导函数.证明:对任意
.
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校学年高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在
分下的学生后,共有男生
名,女生
名,现采用分层抽样的方法,从中抽取了
名学生,按性别分为两组,并将两组学生成绩分为
组,得到如下所示频数分布表.
分数段 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
男 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
女 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)估计男、女生各自的平均分(同一组数据用该级区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定分以上者为优分(含
分),请你根据已知条件作出
列联表,并判断是否有
以上的把握认为“数学成绩与性别有关”.
优分 |
非优分 |
合计 |
|
男生 |
|||
女生 |
|||
合计 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
某种产品的广告费支出 与销售额
(单位:百万元)之间有如下对应数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
参考数据
(1)求线性回归方程;
(2)试预测广告费支出为百万元时,销售额多大?