为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分 |
[50,60) |
[60,70) |
[70,80) |
[80,90] |
评定类型 |
不合格 |
合格 |
良好 |
优秀 |
贷款金额(万元) |
0 |
200 |
400 |
800 |
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(Ⅰ)估计该系统所属企业评估得分的中位数;
(Ⅱ)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
已知圆,圆
,动点
到圆
,
上点的距离的最小值相等.
(1)求点的轨迹方程;
(2)点的轨迹上是否存在点
,使得点
到点
的距离减去点
到点
的距离的差为
,如果存在求出
点坐标,如果不存在说明理由.
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当
时,车流速度v是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
(本小题满分14分)
如图①边长为1的正方形ABCD中,点E、F分别
为AB、BC的中点,将△BEF剪去,将
△AED、△DCF分别沿DE、DF折起,使A、
C两点重合于点P得一个三棱锥如图②示.
(1)求证:;
(2)求三棱锥的体积;
(3)求DE与平面PDF所成角的正弦值.
(本小题满分12分) 随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图4.()
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
(本小题满分12分)已知函数(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(1)求的解析式;
(2)当,求
的值域.