在直角坐标平面内,已知两点A(-2,0)及B(2,0),动点Q到点A的距离为6,线段BQ的垂直平分线交AQ于点P。
证明|PA|+|PB|为常数,并写出点P的轨迹T的方程;
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.
(I)求家具城恰好返还该顾客现金200元的概率;
(II)(文科)求家具城至少返还该顾客现金200元的概率.
(理科)设该顾客有张奖券中奖,求
的分布列,并求
的数学
期望E.
等差数列中,
,前
项和为
,等比数列
各项均为正数,
,且
,
的公比
(1)求与
;
(2)求
已知:正方体,
为棱
的中点.
(1)求证:
(2)求三棱锥的体积;
(3)求证:平面
.
已知数列,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若,求
;
(2)试写出关于
的关系式,并求
的取值范围;
(3)续写已知数列,使得是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列的一般结论是什么?(不需要证明)
在中,
为锐角,角
所对的边分别为
,且
,
.
(Ⅰ)求的值;
(Ⅱ)若,求
的值.