求解不等式。
在直接坐标系中,直线
的方程为
,曲线
的参数方程为
(
为参数)
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
已知:如图,为
的外接圆,直线
为
的切线,切点为
,直线
∥
,交
于
、交
于
,
为
上一点,且
.
求证:(Ⅰ);
(Ⅱ)点、
、
、
共圆.
已知函数,
(
,
为常数,
),且这两函数的图像有公共点,并在该公共点处的切线相同.
(Ⅰ)求实数的值;
(Ⅱ)若时,
恒成立,求实数
的取值范围.
已知点为
轴上的动点,点
为
轴上的动点,点
为定点,且满足
,
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点且斜率为
的直线
与曲线
交于两点
,
,试判断在
轴上是否存在点
,使得
成立,请说明理由.
某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(Ⅰ)若售报亭一天购进270份报纸,求当天的利润(单位:元)关于当天需求量
(单位:份,
)的函数解析式.
(Ⅱ)售报亭记录了100天报纸的日需求量(单位:份),整理得下表:
日需求量![]() |
240 |
250 |
260 |
270 |
280 |
290 |
300 |
频数 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
以100天记录的需求量的频率作为各销售量发生的概率.
(1)若售报亭一天购进270份报纸,表示当天的利润(单位:元),求
的数学期望;
(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.