(本小题满分13分)时下,网校教学越越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格
(单位:元/套)满足的关系式
,其中
,
为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别 |
分组 |
频数 |
频率 |
第1组 |
[50,60) |
8 |
0 16 |
第2组 |
[60,70) |
a |
▓ |
第3组 |
[70,80) |
20 |
0 40 |
第4组 |
[80,90) |
▓ |
0 08 |
第5组 |
[90,100] |
2 |
b |
合计 |
▓ |
▓ |
(1)求出的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率
已知函数的图像上两相邻最高点的坐标分别为
.
(1)求的值;
(2)在中,
分别是角
的对边,且
,求
的取值范围.
已知函数
(1)函数在区间
上是增函数还是减函数?证明你的结论;
(2)当时,
恒成立,求整数
的最大值;
(3)试证明:(
)
已知椭圆的两焦点在
轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点的动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由
如图1,在Rt中,
,
D、E分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.
(1)求证:平面平面
;
(2)若,求
与平面
所成角的余弦值;
(3)当点在何处时,
的长度最小,并求出最小值.