(本小题满分12分)
在医学生物学实验中,经常以小老鼠作为实验对象.在甲笼子里关有7只小老鼠(其中5只白色的,2只灰色的),由于都感染了某种烈性病菌,所以想让它们自行分开.以便于进行观察、试验.现有乙笼子是空的,把甲笼子打开一个小孔(只能让小鼠钻出去,再进不来),让小鼠一只一只地往乙笼子跑(假定它们都会争先恐后地从小孔往乙笼跑),直到两只小灰鼠都跑出甲笼子,立即关闭小孔.以f表示甲笼子里还剩下的小白鼠的数目
(1) 求乙笼子里恰好只有2只小灰鼠的概率;
(2) 求的分布列与数学期望.
(1)已知矩阵M=
,N=
,且MN=
。
(Ⅰ)求实数
的值;
(Ⅱ)求直线
在矩阵
所对应的线性变换作用下的像的方程。
(2)在直角坐标系
中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的方程为
。
(Ⅰ)求圆
的直角坐标方程;
(Ⅱ)设圆
与直线
交于点
。若点
的坐标为(
),求
。
(3)已知函数
.
(Ⅰ)若不等式
的解集为
,求实数
的值;
(Ⅱ)在(Ⅰ)的条件下,若
对一切实数
恒成立,求实数
的取值范围。
已知函数 ,其图像记为曲线 .
(i)求函数 的单调区间;
(ii)证明:若对于任意非零实数 ,曲线C与其在点 处的切线交于另一点 ,曲线 与其在点 处的切线交于另一点 ,线段 与曲线 所围成封闭图形的面积分别记为 ,则 为定值;
(Ⅱ)对于一般的三次函数 ,请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。
某港口
要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口
北偏西30°且与该港口相距20海里的
处,并正以30海里/小时的航行速度沿正东方向匀速行驶,经过
小时与轮船相遇。
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。
如图,圆柱 内有一个三棱柱 ,三棱柱的底面为圆柱底面的内接三角形,且 是圆 的直径。
(Ⅰ)证明:平面
;
(Ⅱ)设
。在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
。
(i)当点
在圆周上运动时,求
的最大值;
(ii)记平面
与平面
所成的角为
。当
取最大值时,求
的值。
已知中心在坐标原点
的椭圆
经过点
,且点
为其右焦点。
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在平行于 的直线 ,使得直线 与椭圆 有公共点,且直线 与 的距离等于4?若存在,求出直线 的方程;若不存在,说明理由。