已知函数 ,其图像记为曲线 .
(i)求函数 的单调区间;
(ii)证明:若对于任意非零实数 ,曲线C与其在点 处的切线交于另一点 ,曲线 与其在点 处的切线交于另一点 ,线段 与曲线 所围成封闭图形的面积分别记为 ,则 为定值;
(Ⅱ)对于一般的三次函数 ,请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。
(本小题满分为10分)
设等差数列的公差为
,前
项和为
,等比数列
的公比为
.已知
,
,
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)当时,记
,求数列
的前
项和
.
(本小题满分为10分)
已知点P(-2,-3)和以点Q为圆心的圆。
(Ⅰ)求以PQ为直径的圆的方程;
(Ⅱ)设⊙与⊙Q相交于点A、B,求直线AB的一般式方程。
(Ⅲ)设直线:
与圆Q相交于点C、D,求截得的弦CD的长度最短时
的值。
(本小题满分为10分)
求满足下列条件的直线的一般式方程:
(Ⅰ)经过两条直线和
的交点,且垂直于直线
(Ⅱ)与两条平行直线及
等距离
已知椭圆的左焦点为
,右焦点为
,离心率
.过
的直线交椭圆于
、
两点,且
的周长为
.
(1)求椭圆的方程;
(2)设动直线与椭圆
有且只有一个公共点
,且与直线
相交于点
.求证:以
为直径的圆恒过一定点
.并求出点
的坐标.
给定直线,抛物线
(1)当抛物线的焦点在直线
上时,求
的值;
(2)若的三个顶点都在(1)所确定的抛物线
上,且点
的纵坐标
,
的重心恰是抛物线
的焦点
,求直线
的方程.