已知函数 ,其图像记为曲线 .
(i)求函数 的单调区间;
(ii)证明:若对于任意非零实数 ,曲线C与其在点 处的切线交于另一点 ,曲线 与其在点 处的切线交于另一点 ,线段 与曲线 所围成封闭图形的面积分别记为 ,则 为定值;
(Ⅱ)对于一般的三次函数 ,请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。
在中,
,
,点
在
上,且
,求
的值.
已知函数的最小正周期为
.
(1)求的值;
(2)将的图象向右平移
个单位后,得到
的图象,求
的单调递减区间.
如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的长半轴长.
(Ⅰ)求,
的方程;
(Ⅱ)设与
轴的交点为M,过坐标原点O的直线
与
相交于点A,B,直线MA,MB分别与
相交与D,E.
(i)证明:;
(ii)记△MAB,△MDE的面积分别是.问:是否存在直线
,使得
=
?请说明理
由.
已知焦点在x轴的椭圆的中心为坐标原点O,椭圆短半轴长为1,动点在直线
(
为长半轴,
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值
如图,已知四棱锥底面
为菱形,
平面
,
、
分别是
、
的中点.
(1)证明:
(2)设AB=2, 若为线段
上的动点,
与平面
所
成的最大角的正切值为
求二面角
的余弦值.