在用自由落体运动验证机械能守恒定律时,某同学按照正确的操作选得纸带如图.其中O点是起始点,A、B、C是打点计时器连续打下的三个点,该同学用毫米刻度尺测量O点到A、B、C各点的距离,并记录在图中(单位cm).
已知打点计时器电源频率为50Hz,重锤质量为m,当地重力加速度g=9.80m/s2.
(1)这三组数据中不符合有效数字读数要求的是_______________.
(2)该同学用重锤取OB段的运动来验证机械能守恒定律,先计算出该段重锤重力势能的减小量为_________,接着从打点计时器打下的第一个点O数起,数到图中B点是打点计时器打下的第9个点,他用vB=gt计算跟B点对应的物体的瞬时速度,得到动能的增加量为___________(均保留三位有效数字).这样他发现重力势能的减小量__________(填“大于”或“小于”)动能的增加量,造成这一错误的原因是____________.
如图15-10所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B的,方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F,方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.求:
(1)EF棒下滑过程中的最大速度.
(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?
如图所示,粗细均匀的金属环的电阻为R,可转动原金属杆OA的电阻为R/4,杆长为L,A端与环相接触,一定值电阻分别与杆的端点O及环边连接,杆OA在垂直于环面向里的、磁感应强度为 B的匀强磁场中,以角速度ω顺时针转动,又定值电阻为R/2,求电路中总电流的变化范围。
如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中。图中只画出了6个圆筒,作为示意),它们沿中心轴线排列成一串,各个圆筒相间地连接到正弦交流电源的两端,设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计。为达到最佳加速效果,需要调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒缝隙时,都恰为交流电压的峰值。
|
如图所示,质量为M=1kg的平板小车上放置着ml=3kg,m2=2kg的物块,两物块与小车间的动摩擦因数为μ=0.5。两物块间夹有一压缩轻质弹簧,物块间有张紧的轻绳相连。小车右端有与m2相连的锁定开关,现已锁定。水平地面光滑,物块均可视为质点。现将轻绳烧断,若己知m1相对小车滑过0.6m时从车上脱落,此时小车以速度v0=2m/s向右运动,当小车第一次与墙壁碰撞瞬间锁定开关打开。设小车与墙壁碰撞前后速度大小不变,碰撞时间极短,小车足够长。(g="10" m/s2)求:
(1)最初弹簧的弹性势能
(2)m2相对平板小车滑行的总位移
(3)小车第一次碰撞墙壁后非匀速运动所经历的总时间。
如图19所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。导轨上端跨接一阻值为R的电阻(导轨电阻不计)。两金属棒a和b的电阻均为R,质量分别为ma=2×10-2Kg和mb=1×10-2Kg,它们与导轨相连,并可沿导轨无摩擦滑动。闭合开关S,先固定b,用一恒力F向上拉a,稳定后a以v1=10m/s的速度匀速运动,此时再释放b,b恰好能保持静止,设导轨足够长,取g=10m/s2。
(1)求拉力F的大小;
(2)若将金属棒a固定,让金属棒b自由下滑(开关仍闭合),求b滑行的最大速度v2;
(3)若断开开关,将金属棒a和b都固定,使磁感应强度大小从B随时间均匀增加,经0.1s后磁感应强度增到2B时,a棒受到的安培力正好等于a棒的重力,求两金属棒间的距离h。