设是公差不为零的等差数列,
为其前
项和,满足
(1)求数列的通项公式及前
项和
;(2)试求所有的正整数
,使得
为数列
中的项.
(本小题满分12分)如图,四棱锥S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,
AD=DC=,SA=SC=SD=2.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求三棱锥的体积.
(本小题满分12分)如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为60°,再由点C沿东偏北75°方向走20米到达位置D,测得∠BDC=30°。
(Ⅰ)求sⅠn∠BCD的值;
(Ⅱ)求此建筑物的高度.
(本小题满分10分)选修4—5:不等式选讲
已知函数
(Ⅰ)求的最大值;
(Ⅱ)若关于x的不等式有实数解,求实数k的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
已知倾斜角为的直线
经过点P(1,1).
(Ⅰ)写出直线的参数方程;
(Ⅱ)设直线与直线
相交于
两点,求
的值.
(本小题满分10分)选修4—1:几何证明选讲
如图,已知△ABC的两条角平分线AD和CE相交于H,B,E,H,D四点共圆,F在AC上,且∠DEC=∠FEC.
(Ⅰ)求∠B的度数;
(Ⅱ)证明:AE=4F.