游客
题文

设数列的前项和为,若对所有正整数,都有
证明是等差数列.

科目 数学   题型 解答题   难度 较难
知识点: 一阶、二阶线性常系数递归数列的通项公式
登录免费查看答案和解析
相关试题

设函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由

如图,在底面为直角梯形的四棱锥平面
⑴求证:
⑵求直线与平面所成的角;
⑶设点在棱上,,若∥平面,求的值.

符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数的分布列及数学期望;
(II)求这名同学被该大学录取的概率.

对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.
(Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值;
(Ⅱ)若数列满足,求数列的通项公式.并判断是否为“类数列”,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号