养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m (底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
(1)解不等式;
(2)如果关于的不等式
的解集不是空集,求实数
的取值范围.
已知复数,若
,
(1)求; (2)求实数
的值.
已知关于x的不等式|x-3|+|x-4|< 3a2-7a+4.
(1)当a=2时,解上述不等式;
(2)如果关于x的不等式| x-3|+|x-4|< 23a2-7a+4的解集为空集,求实数a的取值范围.
已知⊙O1和⊙O2的极坐标方程分别是=2cos
和
="2a" sin
是非零常数).
(1)将两圆的极坐标方程化为直角坐标方程;
(2)若两圆的圆心距为,求a的值.
如图,AB、CD是⊙O的两条平行切线,B、D为切点,AC为⊙O的切线,切点为E.过A作AF⊥CD,F为垂足.
(1)求证:四边形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半径.