(1)求与向量a=(2,-1,2)共线且满足方程a·x=-18的向量x的坐标;
(2)已知A、B、C三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求点P的坐标使得=
(
-
);
(3)已知a=(3,5,-4),b=(2,1,8),求:①a·b;②a与b夹角的余弦值;
③确定,
的值使得
a+
b与z轴垂直,且(
a+
b)·(a+b)=53.
(本小题满分12分)
设,若方程
有两个均小于2的不同的实数根,则此时关于
的不等式
是否对一切实数
都成立?并说明理由。
(本小题满分12分)
已知函数的最小正周期为
,最小值为
,图象过点
,(1)求
的解析式;(2)求满足
且
的
的集合.
(本小题满分12分)
已知函数,
(1)当时,求
的最大值和最小值
(2)若在
上是单调函数,且
,求
的取值范围
(本小题满分10分)
如图:、
是单位圆
上的点,
是圆与
轴正半轴的交点,三角形
为正三角形,且AB∥
轴.
(1)求的三个三角函数值;
(2)求及
.
设数列满足:
是整数,且
是关于x的方程
的根.
(1)若且n≥2时,
求数列{an}的前100项和S100;
(2)若且
求数列
的通项公式.