(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)
甲题:
⑴若关于的不等式
的解集不是空集,求实数
的取值范围;
⑵已知实数,满足
,求
最小值.
乙题:
已知曲线C的极坐标方程是=4cos
。以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
是参数)。
⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;
⑵若过定点的直线
与曲线C相交于A、B两点,且
,试求实数
的值。
(本小题共12分)已知向量,
,函数
.
(Ⅰ)求函数的最小正周期和最大值;
(Ⅱ)求函数在区间
上的最大值和最小值.
已知函数
(1)若函数在
上为增函数,求实数
的取值范围
(2)当时,求
在
上的最大值和最小值
(3)求证:对任意大于1的正整数,
恒成立
已知函数f(x)=,若数列
,
满足
,
,
,
(1)求的关系,并求数列
的通项公式;
(2)记, 若
恒成立.求
的最小值.
设直线与抛物线
交于不同两点A、B,F为抛物线的焦点。
(1)求的重心G的轨迹方程;
(2)如果的外接圆的方程。
如图一,平面四边形关于直线
对称,
。
把沿
折起(如图二),使二面角
的余弦值等于
。对于图二,
(Ⅰ)求;
(Ⅱ)证明:平面
;
(Ⅲ)求直线与平面
所成角的正弦值。