1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问
(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?
(2)从2号箱取出红球的概率是多少?
在中,内角A,B,C所对的边分别为a,b,c,已知
.
(1)求证:a,b,c成等比数列;
(2)若,求
的面积S.
已知命题P:“”,q:“
”,若“
”是真命题,求实数a的取值范围.
若圆经过坐标原点和点
,且与直线
相切, 从圆
外一点
向该圆引切线
,
为切点,
(Ⅰ)求圆的方程;
(Ⅱ)已知点,且
, 试判断点
是否总在某一定直线
上,若是,求出
的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线与
轴的交点为
,点
是直线
上两动点,且以
为直径的圆
过点
,圆
是否过定点?证明你的结论.
已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.
(Ⅰ)若=
,求
及直线MQ的方程;
(Ⅱ)求证:直线AB恒过定点.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求
(Ⅰ)BC边上中线AD所在直线的方程;
(Ⅱ)三角形ABC的外接圆O1的方程;
(Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。